Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces
نویسندگان
چکیده
A series of experiments are presented which study the flow kinematics of water past drag-reducing superhydrophobic surfaces. The ultrahydrophobic surfaces are fabricated from silicon wafers using photolithography and are designed to incorporate precise patterns of micrometer-sized ridges aligned in the flow direction. The ridges are made hydrophobic through a chemical reaction with an organosilane. An experimental flow cell is used to measure the velocity profile and the pressure drop as a function of the flow rate for a series of rectangular cross-section microchannel geometries and ultrahydrophobic surface designs. The velocity profile across the microchannel is determined through microparticle image velocimetry -PIV measurements capable of resolving the flow down to lengthscales well below the size of the surface features. Through these detailed velocity measurements, it is demonstrated that slip along the shear-free air-water interface supported between the hydrophobic micrometer-sized ridges is the primary mechanism responsible for the drag reduction observed for flows over ultrahydrophobic surfaces. A maximum slip velocity of more than 60% of the average velocity in the microchannel is found at the center of the shear-free air-water interface whereas the no-slip boundary condition is found to hold along the surface of the hydrophobic ridges. The experimental velocity and pressure drop measurements are compared to the predictions of numerical simulations and an analytical theory based on a simple model of an ultrahydrophobic surface composed of alternating shear-free and no-slip bands with good agreement. © 2005 American Institute of Physics. DOI: 10.1063/1.2109867
منابع مشابه
Laminar drag reduction in microchannels using ultrahydrophobic surfaces
A series of experiments is presented which demonstrate significant drag reduction for the laminar flow of water through microchannels using hydrophobic surfaces with well-defined micron-sized surface roughness. These ultrahydrophobic surfaces are fabricated from silicon wafers using photolithography and are designed to incorporate precise patterns of microposts and microridges which are made hy...
متن کاملEnhanced mixing in laminar flows using ultrahydrophobic surfaces.
Under laminar, microscale flow conditions, rapid mixing can be difficult to achieve. In these low Reynolds number flows, mixing rates are governed by molecular diffusion, and in the absence of enhanced mixing techniques, mixing lengths and residence times can be much longer than most applications will allow. A number of active mixing techniques have been developed to improve mixing; however, th...
متن کاملParametric study of a viscoelastic RANS turbulence model in the fully developed channel flow
One of the newest of viscoelastic RANS turbulence models for drag reducing channel flow with polymer additives is studied in different flow and rheological properties. In this model, finitely extensible nonlinear elastic-Peterlin (FENE-P) constitutive model is used to describe the viscoelastic effect of polymer solution and turbulence model is developed in the k-ϵ-(ν^2 ) ̅-f framework. The geome...
متن کاملNumerical Simulation of Fluid Flow Past a Square Cylinder Using a Lattice Boltzmann Method
The method of lattice boltzmann equation(LBE) is a kinetic-based approach for fluid flow computations. In the last decade, minimal kinetic models, and primarily the LBE, have met with significant success in the simulation of complex hydrodynamic phenomena, ranging from slow flows in grossly irregular geometries to fully developed turbulence, to flow with dynamic phase transitions. In the presen...
متن کاملHigh Reynolds Viscous Flow Simulation Past the Elliptical Airfoil by Random Vortex Blob
In this paper, numerical simulation for a two-dimensional viscous and incompressible flow past the elliptical airfoil is presented by Random Vortex Blob (RVB). RVB is a numerical technique to solve the incompressible, two-dimensional and unsteady Navier-Stocks equations by converting them to rotational non-primitive formulations. In this method, the velocity vector at a certain point can be cal...
متن کامل